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Consider the case of an experimenter who is Iintevested in testing the
nypothesis that t levels of an independent variable have an identical efiect
on the dependent variable values of the units in a population. Given that
he has unblaced estimates of treatment effects, the experimenter should choose
for a fixed sample size a procedure that provides as statistically powerful a
test as possible. The purposees of the present paper are to discuss the rela-
tive power of three possibtle designs under the condition that data are to be
analyzed by nonparametric techniques, to compare the power of each nonparametric
technique to the power of its parametric analogue, and to compare the relative
powers using nonpavametric techniques te the better known relative pecwers using
parametric techniques. The three nonparametric techniques are the Kruskil-
Wallis test on data where experimental units have been simple random assigned
to levels of the independent variable, Friedman's rank ANOVA on data in a
randomized blocks design, and » nonparametric analysis of covariance (ANCOVA)
which has recently been proposed by Quade (1967). The parametric analogues are
respectively; one wav analysis of variance (ANOVA), two way ANOVA, and para-
metric ANCOVA., Since the nowparametric tests are based on large sample approxi-
mations, the goodness of their fit for small samples 1s also of concern. State~
ments of asymptotic relative efficiency and imprecision are reviewed as suggestive
of the relativ~ small sample powers of the designs and statistics invertigated.
Results of a Monte Carlo investigation are provided to speak more directly ho the
concern of gmall sample power and to provide data on goodness of fit.

In a 1970 AERA paper (Porter and McSweeney, 1970) we empiricaily investi-
gated the gmall sample goodness of fit and power of the Kruskal-Wallis and Friedman

Q tests, but did not provide empirical a's and fowers fqr their parametric analogues.
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Our 1970 AERA paper also investigated the effects of analyzing data in randomized
blcck form with a Kruskal-Wallis test, and the effects of using Friedman's test
on data where blocks were formed after initial random assignment. Here we extend
last year's work by considering Quade's nonpavametric ANCOVA, conmparing the

smuall sample properties of nonparametric ANCOVA to our last year's data on
Kruskal-Wallis and Friedman's tests, and by presenting empirical results for

all three parametric analogues. Partial motivation for our study is provided

by Quade (1967, p, 1198) when in reference to his nonparametric ANCOVA he states
"Another disadvantage of the rank method at this time appears to be its unknowu
behavior for small samples, say with less than five to ten observations per
group.” Further motivation is provided Ly the apparent lack of information in
the literarure about the small sarple power of different experimental designs
for test’ng a common hypothesis when nonparametric tests are used. By com-
parison considerable attention has been given to study of the relative small
sample power among those same experimental designs when parametric teats are
used, 1In another 1¢71 AERA paper (McSweeney and Porter, 1971) we further

extend our considerations of small sample goodness of fit and power to include

a modification of Quade's nonparametric rank ANCOVA and a nonparametric index

of response which we propose.

When an experimenter is interested in testing the above stated hypothesis
that t levels of an independent variable have an identical effect on the depen-
dent variable values of the units in a population, he can proceed by obtaining
a simple random gsample from the population of interest and then use simple ran-
dom ansfpnment of experlmental unfts to levels of the independent variable,
Given the assumptions of ncrmality, homoscedasticity and independence he can
analyze his data by a one-way ANOVA. However, if anrecedent information is

available on a concomitant variable and if the concomitant variable has a
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linear relationship with the dependent variable, ANCOVA will probably pravide

a more powerful test., The well known assumptions for parametric ANCOVA are
conditional normality, conditional homoscedasticity, independence, and parallel
treatment group regrescion lines.

Another method of using antecedent information on a concomitant variable
in an attempt to improve statistical power is to employ a randomized blocks
design. Pingel (1969) defines two types of randomized blocks design and com-
pares their precisions when data are analyzed by a two way ANOVA. Unfortunately,
the more precise method involves forming blocks on the population distribution
of the concomitant variable and thus requires more information than is typically
avallable, The other type of randomized blocks design requires a random sample
of tb units from the population, which are then put in rank order on the basis
of their concomitant variable values. Then the experimenter randomly assigns
one unit to each level of the independent variable from the first set of t
units, one unit to each level from the second set of t units, and so on until
the tb observations have all been assigned. The second type of randomized
blocks design is the one investigated in the present study because of its
greater feasibility for an experimenter. The assumptions for two way ANOVA
o data in a randomized blocks design are normality, homoscedasticity, inde-
pendence, and no biock by treatment interaction.

Over the past several years there has been some debate as to the general
utility of nonpararetric techniques. The robustness of the analysis of variance
F test (Box, 1955) has been offered as an argumant in favor of its use, even
when the assumptions of normality and homo:scedasticity are viclated. This argu-
ment emphasizes the goodness-of-fit of the F test statistic tu the theorctical
null distribution ever when the assumptions for the F test are seriously in error.
Its principal concern is with the size of the actual Type I error. Despite the
O
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good control over Type I error given by the F test when parametric assumptions

are violated, nonparametric tests for the same designs are generally more power-
ful than their parametric counterparts in these circumstances (Bradl.,, 1968).
Therefore, the Kruskal-Wallis, Friedman's ANOVA, and Quade's nonparametric ANCOVA
are to be preferred over their parametric counterparts when parametric assumptions
have been violated,

Both the Kruskal-Wallis and the Friedman test statistics operate on ranks,
but they differ in their methods of ranking. When calculating a Kruskal-Wallis
test statistic the units are ranked 1 through tb on *he basis of their dependent
variable values. The Friedman test statistic requires that the units within each
block be ranked 1 through t on the basis of their dependent variable values. The
Kruskal-Wallis test statistic 1s then defined

H= .___JEL__.g R% - 3(tb+l),
tb2 (tb+l) Tul

and the Friedman test statistic is defined

R% - 3b(tH1),

where RTdenotes the eum of the b ranks under the Tth level of the independent
variable. The assumptions for the Kruskal-Wallis test are independence of units
and measurement of the dependent variable on at least ordinal scale. The assumg-
tions for the Friedman test are independence among blocks and that within each
block the dependant variab’e is measured on at least an ordinal scale.

Because the nonparametric ANCOVA proposed by Quade is relatively new and
therefore probably not well known, a more detailed description is appropriate.
Although Quade's nonparametric ANCOVA is not restricted to use of a single con-
comitant variable, the present paper considers only the single conconitint vari-

able case. The restriction is madc to facilitate comparison with our carlier
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investigation of Friedman's ANOVA on data in a randomized blocks design where

we considered only a single concomitant variable, The nonparametric analysis

of covariance test statistic is calculated by first replacing each observation

on the concomitant or covariable by its respective rank and each observation

on the dependent variable by its respective rank, where in both cases ranking

is dene on all experimental units across all levels of the independent variable,
Each rank on the covariable is then replaced by its deviation from the mean of
ranks on the covariable, and each rank on the dependent variable is replaced by
i{ts deviation from the mean of the ranks on the dependent variable. Disregarding
levels of the independent variable, least squares theory is used on the deviation
data to provide predicted daviations on the dependent variable. Because both
sets of deviation data have a mean of iero and common variance, the least squares

regression equation is

-~

d =r.d
Yoo S Xpp

where rs is the Spearman rank order correlation coefficient calculated on
the original rank data ignoring levels of the independent
variable,
d denotes a deviation rank,
X denotes the covariable,
Y denotes the dependent variable,

T denotes the Tth lev:l of the independent variable,

and B denotes the Bth replication within the Tth level of the inder2ndent
variable.

A new variable, say ZTB' is formed by subtracting each unit's predicted deviation

from its observed deviation,

= d -d .
B Yop dYrs
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The new variable, becomes the dependent variable for a one-way ANOVA F test.

ZTB’
The reference distribution for the F test statistic Is the central F with degrees

of freedom equal to t -~ 1 and tb - t as tb + ©

The only assumption that Quade's nonparametric ANCOVA has in common with
parametric ANCOVA is independence of units. The nonparametric ANCOVA further
assumes that the covariable has the same distribution in each population. The
identical covariable distributions assumption is necessarily met i{f ohservations
oni the covariable are taken prior to the experiment and if simple random assign-~
ment of units to levels of the independent variable is employed. The relaxation
of the need for a linear relationship between the dependent variable and covariable
to only a need for a monotonic relationship for nonparametric ANCOVA may be of
particular practical importance. It is also helpful to note that Quade's nonpara-
meiric ANCOVA reduces to a Kruskal-Wallis test when the Spearman rank order cor-
relation is zero.

The question of goodness of fit of the three nonparametric test statistic's
sampling distributions to their large sample approximations must be answered em-
pirically. Their relative powers and comparisons of their powers to the powers
of their respective parametric analogues for small samples must also be answered
largely on an empirical basis} however, statements of Pitman asymptotic relative
efficiency are informative, Quade (1967) has shown that the asymptotic relative
efficiency of his nonparametric ANCOVA with respect to the Kruskal-Wallis test
is 1/(1-02) where pg denotes the population Spearman correlation. Asymptotic
relative efficiency statements for Friedman with respect to Kruskal-Wallis and
nonparametric ANCOVA with respect to Friedman are not known.

When comparing the etficiency of nonparametric tests to their parametric

counterparts given the parametric assumptions, Andrews (1954) has shown that the

@ T“‘ruskal-Wallis test has asymptotic relative efficlency of ,955 with respect to
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the one-way ANOVA. Friedman (1937) has given the asymptotic relative efficiency
of his test relative to the two-way ANOVA as .637 when t equals Z and .912 when

b equals 2. For other values of b and t the Friedman test has asymptotic relative
efficiency between .637 and .912 (Noether, 1967). When the number of blocks for
the Friedman test becomes large, its asymptotic relative efficliency with respect
to the two-way ANOVA is .955 (EgI}. Quade (1967) demonstrated that his non-
parametric ANCOVA has .955 (1 - pﬁy)l(l - pz) asymptotic relative efficiency

with respect to the parametric ANCOVA, where p,, denotes the population cor-

XY

relation of the dependent variable and the covariable and p_ is the population

S
Spearman correlation. Thé relationship between the two coefficients is
Py = 2 sin (“05/6),

given that X and Y have a bivariate normal distribution. 1t folloss that the
asymptotic relative efficiency of nonparametric to parametric ANCOVA {s greatest
when Py = 0 and becomes less as the absolute value of Pxy increases, having a
smallest value of .866.

Cox (1957) provides indices of true imprecision for two-way ANOVA of data
in randomized block form and parametric ANCOVA, which are instructive in choosing
gmong the two techniques on the basis of their statistical power. Cox defines an
index of true {mprecision as the ratio of the average variance of the difference
of.means for pajirs of levels of the independent variables over the average variance
of the difference of means for pairs of levels of the independent variable if all
of the variance of the dependent variable accounted for by the concomitant variable

were removed. The index of true Iimprecision of two-way ANOVA on data in the type

of randomized block form of interest is
2
1+ ——Z—DXY W,
1 -9
XY

Qo where W 18 the expected mean square of X within blocks divided by the variance
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of X, The index of true imprecision for parametric ANCOVA is

tb -t -1
tb -t - 2

Based upon the above two statements of imprecision Cox concludes that where

o is less than .6, the randomized hlocks design {s to be preferred over

XY
ANCOVA; but where Pyy is equal to or greater than .8, ANCOVA is to be pre-
ferred over randomized blocks. These statements do not reflect the differences
in number of degrees of freedom for the two parametric tests. When taken into
consideration the differences iu degrees of freedom suggest that a one--way
ANOVA will be more powerful than either ANCOVA or randomized blocks, and that
ANCOVA will te more powerful than randomized blocks when Pxy = .0,

Although the above statements of asymptotic relative efficiency and true
imprecision provide no direct information about the small sample relative
powers of the iechnique being investigated, they are sugzestive. In general
they suggest that given parametric assumptions the nonparametric techniques
should be expected to yield slightly less tower than their parametric ana-
logues. Further, they suggest that as the absolute value of Pxy increases
the power of the nonparametric ANCOVA should become progressively greater
than the power of the Kruskal-Wallis. By a more indirect argument they sug-
gest that Friedman ANOVA on data in randomized block form should be more
powerful than the Kruskal-Wallis test for fairly large absolute values of
Pxy. They are somewhat less suggestive of what to expect when comparing
the small sample powers of Friedman's test to those for nonparametric ANCOVA.

Monte Carlo studies were conducted to provide information about the
small sample properties of the sampling distributions of the Kruskal-Wallis
and one-way ANOVA test statistics when calculr*ed on data in a simple ran-
dom assignment design; the nonparametriz ANCOVA and parametric ANCOVA test

O
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statistics when calculated on wata in a simple random assignment design with infor-
mation on an antecedent concomitant variable available; and Friedman's ANOVA
énd two-way ANOVA when calculated on data in a randomized blocks design. Em-
pirical estim. “es of the probability of a Type I error (a) provide information
about the small sample goodness of fit for each of the three nonparametric
statistics. Empirical estimates of power provide data relevant to chuosing
among the three nonparametric statistics, the three parametric statistics,
and are indicative of the difference in power of nonparametric and parametric
statistics vhen parametric assumptions are met.

Figure 1 presents an overview of the condi:ions under which each type
of sampling distribution was investigated. For each X in Figure 1, sampling
distributions for 1000 samples were generated for the central case, i.e.
Ho: true, and one noncentral case, i.e. Ha: true. The population distri-
butions indicated in Figure 1 were chosen to allow comparisons with the
results from our earlier study of the Kruskal-Wallis and Friedman tests.
Three values of t were investigated because of possible trends in the sampling
distributions as the number of levels of the treatment independent variable
increase, The smallest value of t was three since the Wilcoxon matched pairs
test offers a more powerful alternative to the Friedman when t equals two.
Three values oi b were investigated liecause of possible irends in the sampling
distributions as the number of units under each level of the independent vari-
able increase. The smallest value of b was five since exact tests would be
more appropriate for smaller values. Four values of the correlation hetween
the concomitant variable and the dependent variable werc investigated to pro-
vide information on the relative small sample powers of chree nonparametric
statistics, and to see 1f the interrelationships of their powers parallel the
Qerter krown {nterrelationships of the powers of their pa-ametric analogues.
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Figure 1

CONDITIONS OF THE DESIGNS INVESTIGATED

[ Pxy

t b .0 4 .6 .8
5 X

3 8 X X X X
10 1 X
5

5 8 X -
10
5

8 8 X
10 T

t = number of treatments
b = number of blocks

nx = the correlation between the concomitant variable and the
y dependent variable

X denotes a population investigated
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The smallest valua of the correlation was zero, defining the situatic.: where
the three designs are essentially the same; and the largest value was .8 since
in practice correlatiéns are infrequently larger. The non-ceutral case was
created by adding the value one to the dependent variable value of each unit
under the first level of the treatment independent variable. For the threc
nonparametric tests the noncentral case was created prlor to forming ranks.
The non~-central case was chosen because it seemed to represent a deviation
from the null hypothesis that most exp2rimenters would wish to notice. Fur-
ther, it produced intermediate values of power which facilitated comparisons
of the varinus techniques.

All data generation and subsequent calculaticons were done eon a Control
Data 3600 computer. A pseudo-random unit normal deviate was generated by
first generating random numbers from a uniform distribution by the multi-
plicative congruent method, By the Central Limit Theorem the sim of six-
teen of the above numbers is approximately normilly distributed, and by a
linear rescaling the sum becomes a pseudo-random unit normal deviate. In
this way 1,000 random samples of size tb each were generated for each pop-
ulation indicated in Figure 1. Each population had a bivariate normal dis-
tribution with knowr correlatinn between the concomitant and dependent vari-
ables, and each marginal distribution normal zero, one. Given a sample of
size tb, the data were then arrang.d {nto simple random assignment and ran-
domized blocks designs.

Tahle 1 compares the empirical sampling distributions of the three non-
parametric tests when calculated on data in their respective appropriate designs
for t = 3, b = 8, and varying values of Pyy* The data fer Kruskal-Wallis snd
Friedman tests are taken {rom our 1970 AERA paper {Porter and McSweeney, 1970).

@ The three rows labeled central * ‘jicate the goudness of fit of the empirical
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distributione to their respective Chi Square and F reference distributions under
the null hypothesis. The standard errors of the proportions representing em-
pirical a's are approximately .009 for a = .10, .007 for a = .05, and .003 for
a = ,01, The empirical and nominal values of o are in close agreement for all
three statistics with the greatest discrepancies at « = ,10 for the Friedman.
As noted in our 1970 paper the largest discrepancies for the Fr. :dman are to
be expected since the empirical values are closer to the values from the exact
distribution of the Friedman test derived from permutation theory than are the
nominal values, The discrepancy between the exact and large sample approxi-
matio. distributions is reflecting the fant that the Friedman test statistic
{s a discrete variable with fewer possible values than the Kruskal-Wallis
or nonparametric ANCOVAtests because of the difference in their methods of
ranking.

The three rows labeled non-central contain the empirical values of
power for the three nonparametric tests given that a common alternative hy~-
pothesis was true. Their largest standard error of approximately .016 occurs
when power equals .5, As noted in our 1970 paper, the data clearly indicate
that the Kruskal-Wallis is more powerful than the Friedman ANGVA when Pxy = +0.
The data further indicate that nonparametric ANCOVA is more powerful than the
Friedman ANOVA at all three levels of a when Pyy = .0. Consistent with asymptotic
theory the data are nut as clear when comparing nonparametric ANCOVA to the
Kruskal-Wallis. Kruskal-Wallis is seen to be slightly more powerful at a = .10,
+396 compared to .543; and a » ,05, .437 compared to +418; but slightly less
powerful than ncnparawetric ANCOVA for a = ,01, ,158 compared to .202, As pr
1acreased the power of the Kruskal-Wallis remained relatively stable whereas

the powers of Friedman ANOVA and nonparametric ANCOVA were both strict mono-

tonic increasing functions of Py for all three levels of c. When Pyy 2 o4,
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the power of nonparametric ANCOVA was greater than the power of Krugkal-Wallis
and Friedman for all three levels of &. As noted in our 1970 paper, the data
make no clear distinction on the basis of power between Kruskal-Wallis and
Friedman ANOVA when correlation is .4. When the correlation {s .6 or .8,
Friedman was clearly more powerful than Kruskal-Wallis. There was & slight
tendency for the nonparametric ANCOVA to become progressively more powerful
than the Friedman ANOVA as Pxy increased., When the empirical power of the
Friedman ANOVA is subtracted from that of the nonparametric ANCOVA for in-
creasing values of Pxy® the differences for o = .10 are .015, .013, .028,
.064; for n = .05 are .08¢, .091, .162, .120; and for o = .01 are .007, .082,
.112, ,168. The values of pyy were .0, .4, .6, and .8 respectively.

Table 2 compares the empirical sampling distributions of the three para-
metric tests when calculated on data in their respective appropriate designs
for t = 3, b = 8 and varying values of Pxy. As should be expected, the three
rows labeled central indicate very good fit for all levels of o. The one
exception is one-way ANOVA with Pyy = .6, which resulted in empirical a's .010
too large for all three nominal values of a.

The empirical povers indicate that when Py = .0, one-way ANOVA 1is more
powerful than ANCOVA for all three levels of a. One way ANOVA Is also more
powerful than two-way ANOVA on data in randomized block form for a = ,05, ,458
compared to .453; and .01, .210 compared to .199; but less powerful for a = .10,
«584 compared to .598. As Pyy jaucreased the power of one-way ANOVA remained
relatively stable, whereas the powers of two way ANOVA and NCOVA were both
strict monotonic increasing function of Pxy for all three levels of a. Per-
haps the most interesting power comparisons are between two way ANOVA and ANCOVA.
The empirical powers are only partially in support of Cox's (1957) statements

\)cited earlier 1; the paper. For Pyy ™ .0 the comparisons are not of interest
ERIC
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since one-way ANOUVA is preferred. When Py = .4, two-way ANOVA vas more power-

ful than ANCOVA when a = ,10, ,645 compared to .625; but less pcwerful shen

a = .05, .502 compared to .504; and a = .01, ,223 comp;red to ,239, As Pyy increased
from .4, ANCOVA increased in power at a faster rate than two way ANOVA for all

three levels of a with the differential rate of increase in rower being most
noticable for o = ,01.

Taken together, Tables 1 and 2 afford a comparison of nonparametric
techniques to their parametric analogues. As was expected, the empirical «'s
in Table 2 are in general slightly closer to their respective nominal values
than are the empirical a's in Table 1. This finding reflects the discreteness
of the nonparametric test statistics. As was suggested by the statements of
asymptotic relative efficiency presented earlier, there was a greater loss in
power going from the two way ANOVA to the Friedman than there was going from
the one way ANOVA to the Kruskal-Wallis or from the parametric ANCOVA to the
nonparametric ANCOVA. The earlier statements of asymptotic relative efficiency
also suggested that as pr increased the nonparametric ANCOVA would become
increasingly less powerful than the parametric ANCOVA. When the empirical power
of nonparametric ANCOVA is subtracted from that of parametric ANCOVA for in-
creasing values of Pyys the differences for o = ,10 are .025, .031, ,045, .043;
for a = ,05 are .023, .037, .062, .063; and for o = .0l are<.004, ,010, ,041,
.098.

Table 3 provides average mean square errors and their standard crvors
for nonparametric ANCOVA, one and two way ANOVA, and paranetric ANCOVA for
t = 3, b =8 and varying values of Prp® For ali statistics but one way ANOVA
the average mean square errov decreased as pXY increased which {8 reflected
in the power trends reportad for Tables 1 and 2. For the parametric statistics

the values are fdentical for the central and noncentral cases. The expected
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value of the mean sqnrare error for ANOVA is one for all values of Py and in
each case the empirical values were very close to one. The expe:ted value of

the mean square error for parametric ANCOVA 1s (1 - piY)_ZO when t = 3 and
19

b = 8, and again in each case the empirical values were in closce agreement with

the expected values. When Pxy = .0 the expected value of the mean square error

for two way ANOfA is one and Eb:E:i for ANCOVA, As Py increased from .0, the em-
pirical averag:: mean square errors for parametric ANCJOVA decreased in size at
a faster rate than those for two-way ANOVA. Although the average mean square
error for pnrametric ANCOVA, .8352, was sﬁaller than the average mean square
error for‘éwo way ANOVA, .8509, when Pxy = .4, there was no clear difference
in theip/émpirical powers as reported earlier in reference to Table 2. For non-
paramgﬁéic ANCOVA the noncentral average mean square error was smaller than the
central average mean square error for all values of Pxy- This result is ex-
plalned by the nature of the dependent variable. For the central case the de-
guhdent variable ranks 1 through tb are evenly distributed across levels of
‘the independent variable. When the noncentral case is analyzed, the larger ranks
(when observations are ranked from s. 'lest to largest) tend to be in the
group whose raw data values on the dependent variable were all increased by
one. It follows that the variance of the ranks in the group whose values were
increased by one will be redused and the within groups variance of ranks for
the other levels of the independent variable also will be reduced but to a
lesser extent.

Table 4 presents the average correlations of the antezedent and depen-
dent variables within treatment groups, Py and across all ranked observations,
pgs for the populations investigated. u is the same for both the central and

noncentral cases and i1s in close agreement with its population value Pxy* Ex-

y cept for Pxy ® .0 the central case values of Ps have corresponding population
LS
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values less than px{ as indicated by the relationship given earlier between
Pearson Product-Moment and Spearman correlation coefficients. The decrease in
magnitude is .015 for pXY = .4, .018 for Pry = .6, and .014 for Pyy = .8. The
empirical values of pg were in general agreement with their corresponding param-
eters. Except for Py = .0, the noncentral values of pg were smaller than their
respective central values. There are two reasons for this finding. First, Pg

is the average of Spearman correlations calculated disregarding levels of the
independent variable rather than the average of pooled within levels coefficients.
Second, the noncentral rank data has the restriction placed on it that was given
earlier as an explanation of the difference between central and noncentral average
mean square errors for nonparametric ANCOVA.

Table 5 compares the three nonparametric test statistics for p_= .6, b = 8

XY
and varying values of t. The central case euwpirical distributions again indicate
general good fit for all three test statistics, with a slight tendency to be
conservative at a = ,05 and .01 except for nonparametric ANCOVA at t = 3 and

a = ,01. Inspection of the three rows labeled noncentral indicates that all
three statistics lost power as t increased which is understandable from the
method used to define the noncentral case. Nonparametric ANCOVA for all levels
of a and Friedman ANOVA for a = .05 tended to lose p&wer at a slower rate than
Kruskal-Wallis., When the empirical power of the Kruskal-Vallis is subtracted
from that of the nonparametric ANCOVA for increasing values of t, the differences
for a = .10 are .121, .160, .204; for a = .05 are .155, .187, .219; and for

a = .01 are .166, .180, .179. Kruskal-Wallis powers subtracted from Friedman
ANOVA powers for increasing values of t give differences for a = ,10 of .093,

.095, .049; for a = .05 of .025, .080, .118; and for a = .01 of .054, .031,

.051, Nonparametric ANCOVA and Friedman ANOVA tended to lose power at the

o same rate for increasing values of t with nonparametric ANCOVA the more
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powerZul for all values of t and all levels of a, The data also indicate that
nonparametric ANCOVA anil Friedman ANOVA are more powerful than Kruskal-Wallis
when OXY = ,6, b = B and all values of t,.

Table 6 compares the three parametric tests for Py = .6, b = 8 and
varying values of t, Again as was tc be expected the parametric tests indi-
cated slightly better fit of empirical a's to nominal a's with the previously
noted exception of one way ANOVA when t = 3, The empirical power compa:isons
among the parametric test statistics in Table 6 are roughly parallel to those
reported for the nonparametric tests ir Table 5. All threc parametric tests
lost power for increasing values of t. There was a tendency for ANCOVA to
lose power at a slightly slower rate than one way ANOVA at a = ,10 and .05
for increasiag values of t. When the empirical power of one way ANOVA is
subtracted from that of ANCOVA for increasing values of t, the differences
for a = .10 are .149, .180, .192; for o = .05 are .163, .174, .181; and for
a = ,01 are .149, .151, ,132. However, in mild contrast to the results for
nonparametric statistics the data do not suggest a differential rate of loss
in power when comparing two way and one way ANOVA. ANCOVA and two way ANOVA
tend to lose power et the same rate for increasing values of t. Contrary to
the results for nonparametric stutistics, there was no clear difference in
power between ANCOVA and two way ANOVA when Pyy = .6, For t = 3 and 8 at all
three levels of a, ANCOVA was slightly more powerful thén two way ANOVA. The
reverse was true for t = 5 at all three levels of u, For OXY = ,6, b =8 at
all three levels of t, ANCOVA and two way ANOVA on data in a randomized Llocks
design were clearly more powerful than one way ANOVA which is consistent with
the nonparametric results.

The loss in puwer suffered by using a nonparametric test when the as-
sumpticns for its parametric analecgue are met is seen by comparing Table 5 to
Q

23



O=dnc.,.¢Cn

Tm

T

n sem 3ISED TBIIUID-UOU ay]
¥

NOILOALTY J0 SNOIOTY FAILOIJSAY WIFHI NI ONITIVA SOILSIIVIS

9 318Vl

1S3l (0d) VAOONY ANV VAONY AVM OMI QNV 3INC IO SKOIIJ0dOdd TVII¥idK3

9€cE” GEe” 20T" [43 L5€° T0Z" s9¢” 0zg" 91Z° T0°
165° 996" o1Y” 819" %79° o9y° 99° 905" Z8Y" S0- , [E33udn-tox

6cL” 869" LES” z9L" £9L° 786" 09¢L° 9¢L” T19° (o) &d

900" 010° 900° 800° S10° S00° 710° 900° 0z0° 10°
6%0" $S0° £€90° 950" 50" 160" 50" 050" 090" S0 1213037

%01* T 660° T60° 601° 50" T0T" 160° 9Z1” o1"

od AepM Kep Jd Lem Lep 2d Kep Kepm °

oMY, S THy) oMY E2474) oMy aup
8 S € =3
[ 1 [ 1 € € - hxn L3 . 4 - € ]
g8 6 £€=3:8=q 9" = <I0° "SO 01" = ¥ ¥04

Aruitoxt provided by Eic:

E\.

24



~17-

Table §. The r~sults are closely parallel to those reported earlier when com-
paring the ronparametric powers in Table 1 to the parametric powers in Table 2,
Again the loss was relatively small and quite similar for Kruskal-Wallis and
nonparametric ANCOVA, For all values of t and all levels of o the Friedman
ANOVA suffered the greatest loss when compared to i{ts parametric analogue,
which is consistent with asymptotic theory. However, the amour* of loss did
not decrease with increasing values of t as might have been expected from
asymptotic theory.

Table 7 presents nonparametric ANCOVA, one and two way ANOVA, and ANCOVA
average mean square errors and their standard errors for DXY a ,6, b=8, and
varying values of t. The parametric values were the same for both central and
noncentral cases and the nonparametric ANCOVA values were systematically smaller
in the noncentral case for the :ame reasons given easriier when discussing the
results in Table 3, For all levels of‘t the average mean square errors for one
way ANOVA and ANCOVA are very close to their expecfed values. Consistent with
theory, the average mean square error8 for two way ANOVA are less than those
for one way ANOVA but slightly larger than those for ANCOVA. The increasing
values of the average mean square errors {~r nonparametric ANCOVA as t in-
creased can be understood by remembering that the variance of ranks must in-
crease as the number of units being ranked increases.

Table 8 compares the three nonparametric test statistics for Pxy = +6,

t = 3, and varying values of b. The three rows labeled central indicate good
fit for the three statistics with the results indicating the Friedman ANOVA to
be slightly liberal at b » 5 and a = .10 and the nonparametric ANCOVA to be
slightly liberal at o = ,0) for all values of b. The three rows labeled non-
central indicate that all three tests increased in power as the values of b
iycreased. The data suggest that nonparametric ANCOVA aad Friedman ANOVA

ERIC
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increase in power at a faster rate than Kruskal-Wallis as values of b increase.
When the empirical power of the Kruskal-Wallis is subtracted from that of the
nonparametric ANCOVA for increasing values of b, the differences for a = .10
are .124, ,121, .153; for o = .05 are .108, .155, .179; and for o = .0l are
.091, .166, .222., Kruskal-Wallis powers subtracted from Friedman ANOVA powers
for increasing‘values of b glve differences for a« = .10 of .114, .093, .045;
for a = .05 of .013, .029, .063; and for a = .01 of ~.027, .054, .090. The
data indicate a slight tendency for nonparametric ANCOVA to increase in power
at a rate faster than Friedman ANOVA for increasing values of b with nonparamet-
ric ANCOVA the more powerful for all values of b and all levels of a. When
the empirical power of the Friedman ANOVA is subtracted from that of the non-
parametric ANCOVA for increasing values of b, the differences for o = .10 are
.010, .028, .108; for « = .05 are .0%5, .126, .116; and for a = .01 are .118,
.112, .132, Again nonparametric ANCOVA and Friedman ANOVA aré more powerful
than the Kruskal-Wallis when Pxy = .6, t = 3, and varying values of b with

the one exception of Friedman ANOVA when b = 5 and 2 = .01. For all popu-
lationd represented in Table 8, the nonparametric ANCOVA was more powerful than
the Friedman ANOVA.

Table 9 compares the three parametric test statistics for Pxy ° 6, t = 3,
and varying values of b. The empirfcal a's presented in the rows labeled cen-
tral indicate good fit with the same exception noted earlier of one way ANOVA
when b = 8, Again the parametric results closely parallel the corresponding
nonparametric results in Table 8. All three statistics increased in power as
the values of b increased. Both ANCOVA and two way ANOVA increased in power
at a faster rate than one way ANOVA for increasing values of b. When the empiri-
cal power of the one way ANOVA 18 subtracted from that of ANCOVA for increasing

values of b, the differences for a = ,10 are .143, .149, .147; for a = .05 are
O
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105, .163, .216; and for o = ,0L are .045, .149, .213. One way ANOVA powers
gsubtracted fcom two way ANOVA powers for increasing values of b give dif-
ferences for « = .10 of .094, .125, .137; for a = .05 of .079, .124, .195;
and for a = .01 of .043, .104, .190. ANCOVA and two way ANOVA on data in

a randomized blocks design increased in power at about the same rate for in-
creasing values of b with ANCOVA the more powerful for all values of b and
all levels of a. For Oxy = .6, t = 3, and all values of b, ANCOVA and two
way ANOVA were both more powerful than one way ANOVA.

A comparison of the nonparametric empirical powers in Table 8 with the
parametric empirical powers in Table 9 indicates the same relationships as
similar earlier comparisons had shown for Tables 1 and 2 and Tables 5 and 6.
The difference in power 1is relatively small for Kruskal-Wallis versus one way
ANOVA and nonparametric ANCOVA versus parametric ANCOVA, but quite substantial
for Friedman versus two way ANOVA.

Table 10 presents nonparametric ANCOVA, one and two way ANOVA, and ANCOVA
average mean square errors and their standard errors for DXY = ,6, t = 3, and
varying values of b. The parametric values were the same for both central and
noncentral cases and the nonparametric ANCOVA values were systematically smaller
in the noncentral case for the same reasons given earlier when discussing the
resulcs in Tables 3 and 7. The increasing values of the average mean square
errors for nonparametric ANCOVA as b increases are understood by the same
vrcason givea for thelr having increased with increasing values of t in Table 7.
Again for all levels of b, the average mean square errors for one way ANOVA and
ANCOVA are very close *to their expected values. The average mean square error
for two way ANOVA decreased with an increase in the number of blocks as was

suggested by Cox's statement of true fmprecision given earlier.
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The purpose of the present paper was to extend understanding of the relative
" merits, when nonparametric statistics are used, of a simple random assignment
design t ithout benefit of data on an antecedent concomitant variable, a simple
random assignment design with information on an antecedent concomitant variable
which is linearly releted to the dependent variable, and randomized blocks de-
sign. Interest also centered on the small sample goodness of fit properties
of the Kruskal-Wallis, n.nparametric ANCOVA, and Friedman ANOVA test statistics
which are appropriate for the designs investigated. The data from our earlier
study suggested that the randomized blocks design analyzed by Friedman's ANOVA
is a successful method for improving power over that for a simple random assign-
ment design analyzed by the Kruskal Wallis when the correlation between the
blocking variable and the dependent variable is greater than .4. When the cor-
relation is equal to .4, power is not a relevant dimension for ctoosing between
the two designs and when correlation is zero the simple random assignment design
analyzed by the Kruskal-Wallis is the more powerful. Data from the present study
indicate that Quade's recently proposed nonparametric ANCOVA on data in a simple
random assignment design is more powerful than Friedman's ANOVA on data in a
randomized blocks design for all values of the correlation between the concomi-
tant variable and dependent variable, Further the nonparametric ANCOVA is
equal in power to the Kruskal-Wallis when Pxy = .0, but becomes progressively
more powerful than the Kruskal-Wallis for increasing valves of pr'
The data suggest simflar statements for pérametric statistics with a few
notable exceptions. Two wuy ANOVA on data in a randomized blocks design was
more powerful than one way ANOVA on data in simple randum assignment design
when the correlation between the blocking variable and the dependent variable
was equal to or greater than .4. The data also {ndicate ore way ANOVA as more
nnjsrful than ANCOVA for pXY = ,0, Further, the powr of ANCOVA and two way
ERIC
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ANOVA were similar for pXY = .4 and ANCOVA was more powerful than two-way ANOVA
for Py 2 .6, When comparing the power of the three nonparametric statistics

to their parametric analogues where parametric assumption are met, one-way ANOVA
and ANCOVA were only slightly more powerful than the Kruskal-Wallis and non-
parametric ANCOVA respectively, but two way ANOVA was considerably more powerful
than the Friedman ANOVA.

The implications are that when information 1s available on an antecedent
variable which has a monotonie relationship with the dependent variable and non-
parametric astatistics ave to be employed, nonparametric ANCOVA is a better method
for increasing power than is a randomized blocks design. However, a randomized
blocks design may still be useful for improving power in experiments where the
antecedent concomitant variable is mea;ured on a nominal scale and nonparametric
statistics are to be used. The data indicated thaf parametric ANCOVA became
prog=2ssively more powerful than nonparametric ANCOVA as Pxy increased; it should
be remembered that nonparametric ANCOVA needs only a monotonic relationship
between the covariable and dependent variables to be effective. 1In situations
where the rank order correlation exceeds the Pearson-Product momert, the non-
parametric ANCOVA may well be more powerful than parametric ANCOVA.

In general the data for the parametric tests were consistent with the
literature. Qur results indicate that simple random assignment analyzed by one
way ANCVA 1s to be preferred when Pxy™ 0. For DXY = .4 there was no clear
difference in power between ANCOVA and two-way ANOVA on data in randomized blocks
design, but either 1is to be preferred over ANOVA. However, the literature has
suggested that randomized blocks design would be more powerful than ANCOVA for
OXY = .4, The data also suggest that ANCOVA is to be preferred over randomized
blocks design analyzed by two way ANOVA for values of Pyy ™ .6 and that ANCOVA

is clearly the more powerful for pr = ,8.

O
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All three wonparametric and all three parametric methods increased in power
with an Iincrease in sample size, Nonparametric ANCOVA and Friedman ANOVA gained
power at a faster rate than the Kruskal-Wallis, and parametric ANCOVA and two
way ANOVA galned power at a faster rate than one way ANOVA. There was a slight
tendency for nonparametric ANCOVA to gain power at a faster rate than the Friedman,
but parametric ANCOVA and two way ANCVA gained power at the same rate, All three
nonparametric and all three parametric methods lost power as the number of levels
of the independent variable increased as was to be expected from the manner in
which the ncncentral case was defimed.

For three or more levels of the independent variable and five or more
replications per level the empirical and nominal levels of « were In close agree-
ment for all three nonparametric tests. The empirical a«'s for the Kruskal-Wallis
and Friedman tests tended to be slightly conservative except for t equal to thre.
and b less than ten at a equal to .10, The empirical o's for the nonparametric
ANCOVA were slightly liberal for t equal to three and « equal to .01l. For desigus

of smaller dimensions exact tests should be used.

RIC

Aruitoxt provided by Eic:

34



[E

O

REFERENCES

Andrews, F. C. Asymptotic behavior of some rank rests for analysis of variance.
Ann. Math. Statist., 1954, 25, 724-736.

Box, G. E. P, and Anderson, S. L. Permutation theory in the derivation of robust
criteria and the study of departures from assumption. J. Roy. Statis. Soc.,
series B, 1955, 17, 1-34.

Bradley, J. V. Distribution-free statistical tests. Englewocd Cliffs, N.,J.:
Prentice-Hall, 1968.

Cox, D. R. The use of a concomitant variable in selecting an experimentzl design.
Biometrika, 1957, 44, 150-158.

Friedman, M. The use of ranks to avold the assumption of normality implicit in
the analysis of variance. J. Amer. Statis. Ass.. 1937, 32, 675-701.

McSweeney, Marysllen and Porter, A. C., Small sample properties of nonparametric
index of response and rank analysis of covariance. A paper presented at
the American Educational Resear:h Association meetings, 1971.

Noether, G. E. Elements of nonparawetric statistics. New York: Wiley, 1967.

Pingel, L. A, A comparison of the effects of two methods of block formation on
design precision. A paper pre:ented at the American Educat i(mnal Research
Assoclation meetings, 1969,

Porter, A. C, and McSweeney, Maryellen. Randomized blocks design and nonparametric
statistics. A paper presented at the American Fducational Research Asso-
ciation meetings, 1970.

Quade, D. Rank analysis of covariance. J. Amer. Statis. Ass., 1967, 62,
1187-1200,

RIC

Aruitoxt provided by Eic:



